#multiple-scale_analysis

Multiple-scale analysis

In mathematics and physics, multiple-scale analysis comprises techniques used to construct uniformly valid approximations to the solutions of perturbation problems, both for small as well as large values of the independent variables. This is done by introducing fast-scale and slow-scale variables for an independent variable, and subsequently treating these variables, fast and slow, as if they are independent. In the solution process of the perturbation problem thereafter, the resulting additional freedom – introduced by the new independent variables – is used to remove (unwanted) secular terms. The latter puts constraints on the approximate solution, which are called solvability conditions.

Thu 4th

Provided by Wikipedia

Learn More
0 searches
This keyword has never been searched before
This keyword has never been searched for with any other keyword.