#structured_expert_judgment:_the_classical_model

Structured expert judgment: the classical model

Expert Judgment (EJ) denotes a wide variety of techniques ranging from a single undocumented opinion, through preference surveys, to formal elicitation with external validation of expert probability assessments. Recent books are . In the nuclear safety area, Rasmussen formalized EJ by documenting all steps in the expert elicitation process for scientific review. This made visible wide spreads in expert assessments and teed up questions regarding the validation and synthesis of expert judgments. The nuclear safety community later took onboard expert judgment techniques underpinned by external validation . Empirical validation is the hallmark of science, and forms the centerpiece of the classical model of probabilistic forecasting . A European Network coordinates workshops. Application areas include nuclear safety, investment banking, volcanology, public health, ecology, engineering, climate change and aeronautics/aerospace. For a survey of applications through 2006 see and give exhortatory overviews. A recent large scale implementation by the World Health Organization is described in . A long running application at the Montserrat Volcano Observatory is described in . The classical model scores expert performance in terms of statistical accuracy and informativeness . These terms should not be confused with “accuracy and precision”. Accuracy “is a description of systematic errors” while precision “is a description of random errors”. In the classical model statistical accuracy is measured as the p-value or probability with which one would falsely reject the hypotheses that an expert's probability assessments were statistically accurate. A low value means it is very unlikely that the discrepancy between an expert's probability statements and observed outcomes should arise by chance. Informativeness is measured as Shannon relative information with respect to an analyst-supplied background measure. Shannon relative information is used because it is scale invariant, tail insensitive, slow, and familiar. Parenthetically, measures with physical dimensions, such as the standard deviation, or the width of prediction intervals, raise serious problems, as a change of units would affect some variables but not others. The product of statistical accuracy and informativeness for each expert is their combined score. With an optimal choice of a statistical accuracy threshold beneath which experts are unweighted, the combined score is a long run “strictly proper scoring rule”: an expert achieves his long run maximal expected score by and only by stating his true beliefs. The classical model derives Performance Weighted (PW) combinations. These are compared with Equally Weighted (EW) combinations, and recently with Harmonically Weighted (HW) combinations, as well as with individual expert assessments.

Tue 20th

Provided by Wikipedia

Learn More
0 searches
This keyword has never been searched before
This keyword has never been searched for with any other keyword.